Densities and Refractive Indices of Pure Organic Acids as a Function of Temperature

Gabriela Bernardo-Gil, * Mercedes Esquível, and Albertina Ribeiro

Departamento Engenharia Quimica, Instituto Superior Técnico, 1096 Lisboa Codex, Portugal

Densities and refractive indices of normal acids from acetic acid to octanoic acid were measured in the temperature range 20–50 °C. Densities and refractive indices of oleic acid were also measured at the same temperature range. The Eykman equation was used to check the accuracy of experimental densities and refractive indices. The refractive indices obtained by using the Lorentz-Lorenz equation agree with experimental ones within an average deviation of about ± 0.0005 .

Introduction

Refractive index and density are physical properties of extreme importance in the characterization and identification of materials.

As a part of a complete work on the choice of solvents to extract organic acids, the densities and the refractive indices of some of these compounds were measured at temperatures higher than ambient conditions.

Both refractive index and density can be correlated, for each pure compound or mixture, by means of several empirical equations. In the present work, the Eykman and the Lorentz–Lorenz equations were used.

The Eykman equation (1)

$$\frac{n_{\rm D}^2 - 1}{n_{\rm D} + 0.4} \frac{1}{d} = K \tag{1}$$

relates the refractive index $n_{\rm D}$ and the density d (both at the same temperature) by means the constant K. This constant was stated to be independent of temperature for the same compound.

Equation 1 can be expressed in the form

$$\frac{n_{\rm D}^2 - 1}{d} = 0.4K + Kn \tag{2}$$

The left-hand side of this equation is the Newton refraction. This expression states that the Newton refraction varies linearly as the first power of $n_{\rm D}$.

The Lorentz-Lorenz equation

$$\frac{n_{\rm D}^2 - 1}{n_{\rm D}^2 + 2} \frac{1}{d} = R \tag{3}$$

gives the specific refractive index R. When written in the same form

$$\frac{n_{\rm D}^2 - 1}{d} = 2R + Rn^2 \tag{4}$$

states that the Newton refraction varies linearly as the second power of $n_{\rm D}$.

Dreisbach (1) and Kurtz et al. (2) recommended the use of

0021-9568/90/1735-0202\$02.50/0

Figure 2. Densities vs temperature for organic acids: (**■**) acetic acid, (**□**) propanoic acid, (**△**) butanoic acid, (**△**) valeric acid, (**●**) hexanoic acid, (**○**) heptanoic acid, (**▼**) octanoic acid, (**▼**) oleic acid.

© 1990 American Chemical Society

Table I.	Refractive	Indices	of Organic	Acids	at Several
Tempera	tures				

Table II. Densities of Organic Acids at Several Temperatures

t.		n			$10^{4}(-b)$.	-	d, kg m ⁻³				
۰Ċ	expt	lit.	L-L eq ^a \bar{K}	а	°C ⁻¹		<i>t</i> , °C	expt	ref 5ª	<i>a</i> , kg m ⁻³	$10^{4}(-b), \circ C^{-1}$
			Acetic Acid			-	,		Acetic		
20	1.3730	1.3719 ⁶	1.3720 0.474	5 1.3813	4.2		20	1048.9	1049.2	1067.6	9 326
25	1.3707	1.36984	1.3702				25	1044.3	1010.2	1001.0	0.020
30	1.3685		1.3683				30	1039.6			
35	1.3666		1.3665				35	1034.9			
40	1.3644		1.3697				40	1030.3			
45	1.3624		1.3681				45	1025.6			
50	1.3603		1.3610				50	1021.0			
			Propanoic Acid				00	10110			
20	1.3875	1.3865 ^b	1.3874 0.521	0 1.3954	4.1				Propanoio	e Acid	
25	1.3850	1.3848°	1.3852				20	992.2	993.4	1010.8	9.405
30	1.3830		1.3832				25	987.2			
35	1.3813		1.3811				30	982.6			
40	1.3790		1.3790				35	977.8			
45	1.3770		1.3768				40	973.1			
50	1.3751		1.3750				45	968.1			
			Butanoic Acid				50	963.9			
20	1.3978	1.3980^{b}	1.3992 0.552	2 1.4033	3.7				Butanoic	Acid	
		1.3980°					20	963.5	964 2*	979.6	8 044
25	1.3963	1.3958°	1.3974				25	959.5	004.2	010.0	0.011
30	1.3950		1.3954				30	955.2			
35	1.3938		1.3939				35	952.1			
40	1.3921		1.3916				40	947 1			
45	1.3909		1.3895				45	942.7			
50	1.3895		1.3880				50	939.3			
			Valeric Acid				00	00010			
20	1.4080	1.4080	1.4087 0.579	8 1.4146	3.3				Valeric .	Acid	
25	1.4062	1.1000	1.4067		0.0		20	938.2	939.2	953.9	7.853
30	1.4048		1.4049				25	934.0			
35	1.4030		1.4029				30	930.3			
40	1.4013		1.4009				35	926.3			
45	1.3998		1.3991				40	922.2			
50	1.3980		1.3972				45	918.6			
			Herenoic Acid				50	914.6			
20	1 4170	1 41709	1 4174 0 601	9 1 4 2 4 6	37				Heranoia	Aaid	
20	1.4110	1.4163 ^d	1.41/4 0.001		0.1		20	021 G	000 3	029.5	7 600
25	1.4156	1.4149 ^{b,c}	1.4156				20	918.0	322.0	302.0	1.000
30	1.4133	1.4132	1.4140				30	915.0			
35	1.4118		1.4117				35	910.6			
40	1.4100		1.4094				40	906.1			
45	1.4079		1.4077				45	902.7			
50	1.4059		1.4058				50	899.0			
			Hentanoic Acid								
20	1.4230	1.4230	1.4230 0.612	0 1.4306	3.8				Heptanoi	e Acid	
-0		1.4170 ^d					20	917.6	918*	932.5	7.257
25	1.4212	1.4209	1.4213				25	914.3			
30	1.4192	1.4192°	1.4195				30	910.9			
35	1.4174		1.4174				35	907.0			
40	1.4152		1.4154				40	903.2			
45	1.4134		1.4136				45	899.8			
50	1.4118		1.4118				50	896.2			
			Octanoic Acid						Octanoic	Acid	
20	1.4272	1.4279	1.4281 0.62	8 1.4347	3.6		20	910.6	910 G	994.0	7 000
		1.4280°					25	906 1	01010	0210	
25	1.4258	1.4260^{c}	1.4257				30	903.3			
30	1.4240	1.4243°	1.4242				35	899.2			
35	1.4223		1.4220				40	896.0			
40	1.4204		1.4203				45	892.2			
45	1.4183		1.4182				50	889.0			
50	1.4166		1.4165					20010			
			Oleic Acid						Oleic A	cid	
20	1,4619	1.45000	1.4607 0.68	39 1.4688	3.9		20	890.1	890.6	902.5	6.221
20	1.4012	1.4582	1,1001 0,000	. 1.1000	0.0		25	886.6			
25	1.4587		1.4586				30	883.9			
30	1.4570		1.4569				35	880.7			
35	1.4551		1.4551				40	877.0			
40	1.4532		1.4528				45	874.7			
45	1.4512		1.4514				50	871.4			
50	1.4491		1.4495				^a Values r	narked with	h an asterisk	obtained fro	m ref 4.
4 T or	onte-Low	one coulet	ion Values of n	obtained by	using og A						

^b Values obtained from ref 5. ^c Values obtained from ref 6. ^d Values obtained from ref 7.

the Eykman equation to check the accuracy of experimental data.

Experimental Work

Refractive indices were measured between 20 and 50 $^{\circ}\mathrm{C}$ with a Krüss-Abbé refractometer provided with the temperature

Figure 3. Eykman constant vs number of carbon atoms, N_e

controlled to within ±0.01 °C by circulating thermostated water through it. The resultant experimental error was estimated to be about ± 0.0001 for all experiments.

Densities were determined with a 10-mL Brand pycnometer that was calibrated with redistilled water at all the temperatures. The pycnometer was maintained in the bath until a constant meniscus level was obtained by removing the excess liquid when necessary. The samples were weighted in a Mettler Model AE100 balance with an accuracy of 0.0001 g. Replications of measured densities of the pure organic acids indicate an estimated precision of ± 0.1 kg m⁻³.

Acetic acid, propanoic acid, and valeric acid (p.a., Merck) and butanoic acid, hexanoic acid, heptanoic acid, octanoic acid, and oleic acid (BDH, minimum purity 99%) were used as supplied.

The water used for checking the pycnometer was redistilled and run through an ion-exchange column until it showed an electrical conductivity of $< 1 \times 10^{-6} \Omega^{-1} \text{ cm}^{-1}$.

Analysis of Results

Refractive indices of pure organic acids are presented in Table I and have been plotted against temperature in Figure 1. In Table I are also indicated the parameters of eq 5, used

$$n_{\rm D} = a + bt \tag{5}$$

to correlate the refractive indices as a function of temperature. dn/dt has a mean value of -3.8×10^{-4} °C, which is in agreement with those predicted by some authors (3). The goodness of fit is higher than 0.999.

Densities were correlated in the same way, the parameters being presented in Table II. This includes the values of density in the temperature range from 20 to 50 °C.

In Figure 2, densities of pure organic acids are plotted against temperature.

The Eykman constant, K, is independent of temperature for all the acids that we have analyzed, the average deviation between the K values being smaller than ± 0.0005 . Figure 3 represents the variation of K versus the number of carbon atoms (N_c) of the acid.

The values of refractive indices obtained by using the Lorentz-Lorenz equation (Table I) agree with the experimental ones within an average deviation of about ± 0.0005 .

List of Symbols

- parameters of eq 5 a,b
- d density
- к Eykman constant (eq 1)
- refractive index n_{D}
- $N_{\rm c}$ number of carbon atoms of the acid
- R specific refractive index (eq 3)
- temperature, °C

Literature Cited

- Dreisbach, R. R. Ind. Eng. Chem. 1948, 40, 2269. Kurtz, S. S., Jr.; Amon, S.; Sankin, A. Ind. Eng. Chem. 1950, 42,
- (2) 174
- Ortega, J. J. Chem. Eng. Data **1982**, *27*, 317. Perry, R. H.; Chilton, C. H.; Kirkpatrick, S. D. Chemical Engineers' Handbook, 6th ed.; McGraw-Hill: Tokyo, 1985. (4)(5) Dean, J. A. Lange's Handbook of Chemistry, 12th ed.; McGraw-Hill:
- London, 1979. Tmmermans, J. Physico-Chemical Constants of Pure Organic Com-
- pounds, 1st ed.; Elsevier: Amsterdam, 1950. Handbook of Chemistry and Physics, 57th ed.; Weast, R. C., Ed.; CRC (7)
- Press: Boca Raton, FL, 1977.

Received for review December 29, 1988. Revised September 18, 1989. Accepted January 10, 1990. We express our gratitude to the Instituto Na-cional de Investigação Científica, which through the CPQ (Universidade Técnica de Lisboa) supported this work.

Densities and Refractive Indices of Components of Pine Resin

Albertina Ribeiro and Gabriela Bernardo-Gil*

Departamento Engenharia Quimica, Instituto Superior Técnico, 1096 Lisboa Codex, Portugal

Densities and refractive indices of α -pinene, β -pinene, (S)-(-)-limonene, and p-cymene were measured in the temperature range 20-50 °C.

Introduction

Refractive index and density are physical properties of extreme importance in the characterization and identification of materials.

Components and derivatives of pine resin are used in the chemical and perfume industries.

As a part of a large work on the determination of vapor-liquid equilibrium of binary and multicomponent mixtures of components of pine resin (1, 2), the densities and the refractive indices of some of these compounds were measured at temperatures higher than ambient conditions.

Experimental Work

Refractive indices were measured between 20 and 50 °C